Observations On The Surd Equation

$$
\sqrt{2 z-4}=\sqrt{x+\sqrt{\left(m^{2}+k\right) y}}+\sqrt{x-\sqrt{\left(m^{2}+k\right) y}}(m \neq 0)
$$

K.Meena ${ }^{1}$, S.Vidhyalakshmi ${ }^{2}$, M.A. Gopalan ${ }^{3}$
${ }^{1}$ Former VC, Bharathidasan University, Trichy-620 002, Tamil Nadu, India.
${ }^{2}$ Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University,Trichy-620 002,Tamil Nadu, India.
${ }^{3}$ Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to BharathidasanUniversity, Trichy-620 002,Tamil Nadu, India.

Abstract

: In this paper, non-zero integer solutions to the surd equation with three unknowns

given by $\sqrt{2 z-4}=\sqrt{x+\sqrt{\left(m^{2}+k\right) y}}+\sqrt{x-\sqrt{\left(m^{2}+k\right) y}}$ are obtained.

Keywords: surd equation, transcendental equation ,integer solutions

Introduction:

Diophantine equations have an unlimited field of research by reason of their variety. Most of the Diophantine problems are algebraic equations [1,2]. In [3-18], the integral solutions of transcendental equations involving surds are analyzed for their respective integer solutions.

This communication analyses a transcendental equation with three unknowns given by $\sqrt{2 z-4}=\sqrt{x+\sqrt{\left(m^{2}+k\right) y}}+\sqrt{x-\sqrt{\left(m^{2}+k\right) y}}$. Infinitely many non-zero integer triples (x, y, z) satisfying the above equation are obtained.

Notations:
$\mathrm{t}_{3, \mathrm{n}}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
$\mathrm{CP}_{\mathrm{n}}^{4}=\frac{\mathrm{n}\left(4 \mathrm{n}^{2}+2\right)}{6}$
$\mathrm{CP}_{\mathrm{n}}^{12}=\frac{\mathrm{n}\left(12 \mathrm{n}^{2}-6\right)}{6}$

Method of analysis:

The surd equation to be solved is

$$
\begin{equation*}
\sqrt{2 z-4}=\sqrt{x+\sqrt{\left(m^{2}+k\right) y}}+\sqrt{x-\sqrt{\left(m^{2}+k\right) y}}(m \neq 0) \tag{1}
\end{equation*}
$$

On squaring both sides of (1),it simplifies to

$$
\begin{equation*}
\mathrm{z}=2+\mathrm{x}+\sqrt{\mathrm{x}^{2}-\left(\mathrm{m}^{2}+\mathrm{k}\right) \mathrm{y}^{2}} \tag{2}
\end{equation*}
$$

To start with ,observe that the square root on the R.H.S. of (2) is removed by choosing

$$
\begin{equation*}
x=s\left(2 m^{2}+k\right) \quad, y=2 s m \quad k \geq 0 \tag{3}
\end{equation*}
$$

and from (2)

$$
\begin{equation*}
\mathrm{z}=2 \mathrm{~s}\left(\mathrm{~m}^{2}+\mathrm{k}\right)+2 \tag{4}
\end{equation*}
$$

A few numerical solutions are presented in Table: 1 below

Table:1 Numerical solutions

s	k	m	x	y	Z
1	1	1	3	2	6
1	2	1	4	2	8
2	3	1	10	4	18
2	2	3	40	12	46
4	3	5	212	40	226

Observations :

1. $m(2 z-2 x-4)=k y$
2. $(\mathrm{z}-\mathrm{my}-1)^{2}=1+8 \mathrm{t}_{3, \mathrm{ks}}$
3. $y+x=s k+4 s t_{3, m}$
4. $\frac{3(2 \mathrm{mx}-\mathrm{ky})}{\mathrm{y}}$ is a nasty number
5. $\mathrm{y}(\mathrm{m}+1)=4 \mathrm{st}_{3, \mathrm{~m}}$
6. $y(x-(k-1) s)=6 s^{2} C P_{m}^{4}$
7. $7 \mathrm{x}-6 \mathrm{y}=\mathrm{s}\left(7 \mathrm{k}+2 \mathrm{t}_{16, \mathrm{~m}}\right)$
.8. $(7 m-6) y=2 \mathrm{st}_{16, \mathrm{~m}}$
. 9. $(14 \mathrm{~m}-13) \mathrm{y}=2 \mathrm{st}_{30, \mathrm{~m}}$
8. $3 y(x-s(k+1))=6 s^{2} C P_{m}^{12}$

However, there are other choices of x, y for eliminating the square-root on the R.H.S. of (2).
The corresponding values of x, y along with z are exhibited in Table: 2 below:
Table: 2 Choices of x, y, z

x	y	z
$\left(\mathrm{m}^{2}+\mathrm{k}+1\right) \mathrm{s}$	2 s	$2\left(\left(\mathrm{~m}^{2}+\mathrm{k}\right) \mathrm{s}+1\right)$
$\left(\mathrm{m}^{2}+\mathrm{k}\right) \mathrm{p}^{2}+\mathrm{q}^{2}$	2 pq	$2\left(\left(\mathrm{~m}^{2}+\mathrm{k}\right) \mathrm{p}^{2}+1\right)$
$2 \mathrm{~m}^{\mathrm{s}+2}+\mathrm{km}^{\mathrm{s}}$	$2 \mathrm{~m}^{\mathrm{s}+1}$	$2 \mathrm{~m}^{\mathrm{s}+2}+2 \mathrm{k} \mathrm{m}^{\mathrm{s}}+2$

Conclusion:

In this paper, we have presented integer solutions to the surd equation

$$
\sqrt{2 z-4}=\sqrt{x+\sqrt{\left(m^{2}+k\right) y}}+\sqrt{x-\sqrt{\left(m^{2}+k\right) y}}(m \neq 0)
$$

. To conclude one may attempt to find integer solutions to other choices of surd equations .

References:

1. L. E. Dickson, History of Theory of numbers, Vol.2, Chelsea publishing company, Newyork, 1952.
2. L. J. Mordel, Diophantine equations, Academic press, Newyork, 1969.
3. M.A. Gopalan, and S. Devibala, " A remarkable Transcendental equation", Antartica.J.Math.3(2), 209-215, (2006).
4. M. A. Gopalan, V. Pandichelvi, " On transcendental equation $z=\sqrt[3]{x+\sqrt{B y}}+\sqrt[3]{x-\sqrt{B y}}$ ", Antartica.J.Math,6(1), 55-58, (2009).
5. M. A. Gopalan and J. Kaliga Rani, " On the Transcendental equation $x+g \sqrt{x}+y+h \sqrt{y}=z+g \sqrt{z}$ ", International Journal of mathematical sciences, Vol.9, No.1-2, 177-182, Jan-Jun 2010.
6. M. A. Gopalan, Manju Somanath and N. Vanitha, " On Special Transcendental Equations", Reflections des ERA-JMS, Vol.7, Issue 2, 187-192,2012.
7. V. Pandichelvi, " An Exclusive Transcendental equations $\sqrt[3]{\mathrm{x}^{2}+\mathrm{y}^{2}}+\sqrt[3]{\mathrm{z}^{2}+\mathrm{w}^{2}}=\left(\mathrm{k}^{2}+1\right) \mathrm{R}^{2}$ ", International Journal of Engineering Sciences and Research Technology, Vol.2, No.2,939-944,2013.
8. M.A. Gopalan, S. Vidhyalakshmi and S. Mallika, " On The Transcendental equation $\sqrt[3]{\mathrm{x}^{2}+\mathrm{y}^{2}}+\sqrt[3]{\mathrm{z}^{2}+\mathrm{w}^{2}}=2\left(\mathrm{k}^{2}+\mathrm{s}^{2}\right) \mathrm{R}^{5}$ ", IJMER, Vol.3(3), 1501-1503, 2013.
9. M.A. Gopalan, S. Vidhyalakshmi and A. Kavitha, "Observation on $\sqrt[2]{y^{2}+2 x^{2}}+2 \sqrt[3]{x^{2}+y^{2}}=\left(k^{2}+3\right)^{n} z^{2}$ ", International Journal of Pure and Applied Mathematical Sciences, Vol 6, No 4, pp. 305-311, 2013.
10. M.A. Gopalan, S. Vidhyalakshmi and G. Sumathi, "On the Transcendental equation with five unknowns $3 \sqrt[3]{\mathrm{x}^{2}+\mathrm{y}^{2}}-2 \sqrt[4]{\mathrm{x}^{2}+\mathrm{y}^{2}}=\left(\mathrm{r}^{2}+\mathrm{s}^{2}\right) \mathrm{z}^{6}$ ", Global Journal of Mathematics and Mathematical Sciences, Vol.3, No.2, pp.63-66, 2013.

International Research Journal of Education and Technology ISSN 2581-7795
11. M.A. Gopalan, S. Vidhyalakshmi and G. Sumathi, "On the Transcendental equation with six unknowns $2 \sqrt[2]{x^{2}+y^{2}}-x y-\sqrt[3]{x^{2}+y^{2}}=\sqrt[2]{z^{2}+2 w^{2}}$ ", Cayley Journal of Mathematics, 2(2), 119-130,2013.
12. M.A. Gopalan, S. Vidhyalakshmi and S. Mallika, "An interesting Transcendental equation $6 \sqrt[2]{y^{2}+3 x^{2}}-2 \sqrt[3]{\mathrm{z}^{2}+\mathrm{w}^{2}}=\mathrm{R}^{2}$ ", Cayley J.Math, Vol. 2(2), 157-162, 2013.
13. M.A. Gopalan, S. Vidh2yalakshmi and K. Lakshmi, "On the Transcendental equation with five unknowns $\sqrt[2]{x^{2}+2 y^{2}}+\sqrt[3]{w^{2}+p^{2}}=5 z^{2} "$, Cayley J.Math, Vol. 2(2), 139150, 2013.
14. M.A. Gopalan, S. Vidhyalakshmi T.R. Usha Rani, "Observation On the Transcendental equation $5 \sqrt[2]{y^{2}+2 x^{2}}-\sqrt[3]{x^{2}+y^{2}}=\left(k^{2}+1\right) z^{2}$ ", IOSR Journal of Mathematics, Volume 7, Issue 5 (Jul-Aug. 2013), pp 62-67.
15. M.A. Gopalan, G. Sumathi and S. Vidhyalakshmi," On The Surd Transcendental Equation With Five Unknowns $\sqrt[4]{x^{2}+\mathrm{y}^{2}}+\sqrt[2]{\mathrm{z}^{2}+\mathrm{w}^{2}}=\left(\mathrm{k}^{2}+1\right)^{2 \mathrm{n}} \mathrm{R}^{5}$ ", IOSR Journal of Mathematics, Volume 7, Issue 4 (Jul-Aug. 2013), pp 78-81.
16. M.A. Gopalan, S. Vidhyalakshmi and A. Kavitha, "On Special Transcendental equation $\sqrt[3]{x^{2}+y^{2}}=\left(\alpha^{2}+\beta^{2}\right)^{s} z^{2} "$, International Journal of Applied Mathematical Sciences, Volume 6, Issue 2 (2013), pp. 135-139.
17. K. Meena, M.A. Gopalan, J. Srilekha, " On The Transcendental Equation With Three Unknowns $2(x+y)-3 \sqrt{x y}=\left(k^{2}+7 s^{2}\right) z^{2} \quad$ ", International Journal of Engineering Sciences and Research Technology, 8(1): January, 2019.
18. S. Vidhyalakshmi, T. Mahalakshmi, M.A. Gopalan, " On The Transcendental Equation $\sqrt[3]{x^{2}+y^{2}}+\sqrt[2]{m x+n y}=10 z^{3}$, International Journal of Recent Engineering Research and Development (IJRERD), Volume 05 - Issue 06, June 2020, pp. 08-11.

